
A retrieval model for common

textual database management systems∗

Yves MARCOUX

EBSI, Université de Montréal
C.P. 6128, Succ. A, Montréal, Québec, Canada, H3C 3J7

E-mail: marcoux@ere.umontreal.ca

Abstract

The social mission of information professionals is to provide society
with high quality information storage and retrieval services. In order
to fulfill this mission, the professionals need to have an understanding
of the tools they use that is sufficiently thorough for predicting the
behavior of these tools in all normal circumstances.

One important class of tools used by information professionals are
the textual database management systems (TDBMS’s). At present,
the retrieval capabilities of these systems are almost without excep-
tion incompletely described, a situation which sometimes renders the
accurate prediction of their behavior difficult. Thus, the quality of in-
formation storage and retrieval services that the body of information
professionals can provide society is not as high as it could be. To cor-
rect this situation, the retrieval behavior of the TDBMS’s available to
information professionals must be precisely and exhaustively described.
In other words, an abstract retrieval model has to be elaborated for
them.

∗This research was done as part of IDRC Project 3-P-88-1010-3, Réseau pédagogique
pour l’enseignement de l’informatique documentaire , jointly supported by IDRC (Inter-
national Development Research Center of Canada) and CIDA (Canadian International
Development Agency), with additional funding from UNESCO (United Nations Educa-
tion, Science and Culture Organization). The project involved the École des sciences de
l’information of Rabat (Morocco), the École des bibliothécaires, archivistes et documental-
istes of Dakar (Senegal) and the École de bibliothéconomie et des sciences de l’information
of Montréal (Canada). A computer aided instruction course based on the ideas in this
paper was developed as part of the project.

1

In this paper, we present what we believe to be the first formally
defined abstract retrieval model especially designed for describing the
retrieval behavior of common, everyday TDBMS’s. The model is rig-
orously defined, and can be used as a basis for describing the retrieval
behavior of most of the existing TDBMS’s that use boolean logic and
so-called “repeating” values.

The process of modeling the retrieval behavior of TDBMS’s shows
that the form of query expressions accepted by existing systems is
fairly restricted, and suggests a possible (and easily implementable)
generalization. We show that this generalization would not only al-
low the formulation of interesting and meaningful requests that are
impossible (or very difficult) to formulate in the present systems, but
would in fact grant logical completeness to retrieval languages, a form
of completeness analogous to relational completeness in the relational
model.

1 Introduction

The social mission of information professionals is to provide society with
high quality information storage and retrieval services. In order to fulfill
this mission, the professionals need to have an understanding of the tools
they use that is sufficiently thorough for predicting the behavior of these
tools in all normal circumstances.

One important class of tools used by information professionals are the
textual database management systems (TDBMS’s). These include many
packages available on various platforms for local development of textual
databases, as well as many online database servers. At present, the re-
trieval capabilities of the existing TDBMS’s are almost without exception
incompletely described, as presented to their users (i.e., the information
professionals), a situation which renders the accurate prediction of their be-
havior difficult, if not downright impossible, except by trial and error, which
is hardly an acceptable method. Thus, the quality of information storage
and retrieval services that the body of information professionals can provide
society is not as high as it could be. To correct this situation, the retrieval
behavior of the TDBMS’s available to information professionals must be
precisely and exhaustively described. In other words, an abstract retrieval
model has to be elaborated for them.

Because the existing TDBMS’s were developped in the absence of a for-
mal retrieval model, they virtually all work differently as far as the details of
retrieval are concerned, and their collective modeling poses a problem. One

2

possible approach would be to define a huge, very general model, of which all
existing systems would be particular cases (obtained by parametrization).
This approach is likely to yield an unusable model, too general for being
an effective thought-organizing tool, and to leave out some systems anyway.
Thus, we do not consider this approach to be practical.

A probably better approach is to have a fairly simple model which, even
though it does not describe any particular system exactly, can serve as a
common basis for describing the behavior of any existing system. This is
the approach we followed.

In this paper, we present what we believe to be the first formally de-
fined abstract retrieval model especially designed for describing the retrieval
behavior of common, everyday TDBMS’s. The model is rigorously defined,
and can be used as a basis for describing the retrieval behavior of most of the
existing TDBMS’s that use boolean logic and so-called “repeating” values
(a “mild” case of non-atomic values).

A tremendous number of retrieval models and database models have been
defined in the past, including “Non-Normal-Form” models (see [NMU91]),
which bear ressemblance with the model defined here. However, these are
not suitable for our purposes, because they are far too general. Working
with a very restricted and specialized model allows us to include such de-
tailed features as the allowed forms of query expressions, and investigate the
possibility and consequences of relaxing the constraints on these forms.

The version of the model we present here does not include word-oriented
operations (adjacency, proximity, etc.) The modeling of these operations
poses specific problems, mainly because the implementation of these oper-
ations in existing systems does not give rise to an extensional semantics
of query expressions (a semantics in which any subexpression is assigned
a unique value, regardless of where in a query expression it occurs). We
are currently working out the details of an extension to our model in which
word-oriented operations are integrated and use an extensional semantics.

One side effect of using an abstract model is that it could serve as a basis
for an eventual standardization of retrieval functionalities of TDBMS’s (in-
cluding a common retrieval language). The advantages of such a standard-
ization for the community of information professionals (and, by transitivity,
for society) are obvious, and attempts to perform such a standardization
have been made in the past, with only relative success. We believe the lack
of a formal model may have been partly responsible for the limited success
of these endeavours.

The process of modeling has the other side effect of shedding new light

3

on the behavior of the modeled objects. In our case, it revealed that the
query languages of existing TDBMS’s are fairly restricted, and suggested an
easily implementable generalization. Namely, after the presentation of the
model, we investigate a slight generalization of the form of query expressions
accepted by existing systems, and show that it allows the formulation of (in-
teresting and meaningful) requests that are impossible (or very difficult) to
formulate in the present systems. In fact, we show that the proposed gen-
eralization of retrieval languages would grant them logical completeness, a
form of completeness analogous to (although weaker than) relational com-
pleteness in the relational model.

2 Scope of the model

Our goal is to come up with a model that is as close as possible to the
retrieval behavior of the “average” TDBMS. We include in the model data
structuring capabilities and retrieval operations. However, we do not include
such aspects as the concrete syntax of retrieval language, data manipulation
operations (including data entry), reporting facilities, display of search re-
sults and search history management.

Usually, a retrieval or database model is introduced to investigate how
retrieval or database management could be done (in the future). Because
the semantic aspects of information retrieval are so important, most retrieval
models include features or mechanisms that aim at capturing at least part
of the semantic contents of documents (see for instance [BC76] or [Bla90]).

In contrast, the model proposed here attempts to describe what the
mechanics of retrieval in TDBMS’s are now . We deliberately leave out of
the model all semantic aspects of retrieval. Note that, in real life, TDBMS’s
are used to support various indexing or representation schemes that do
capture some semantic aspects of documents, however, we choose not to
include these schemes in our model.

We certainly do not claim that our model represents the ideal way of
doing retrieval in TDBMS’s; however, we claim that it does represent fairly
accurately the retrieval capabilities of TDBMS’s today, and that it can sug-
gest realistic (i.e., easily implementable) improvements.

4

3 The formal model: FF0

3.1 Name and notation

The name of a model is important, because it should convey as much of
the nature of the model as possible. We chose the name “Flat-File” for
our model, because this is usually the term used to refer to data structures
created by common TDBMS’s (see for instance [TL88]).

Because our model is just a first proposal, we expect that there will be
many versions of it. Thus, we will use a subscripted notation to designate
our model. We shall denote it by FF0.

3.2 Structure of a database

For the sake of clarity, we intersperse the definitions that directly relate to
the model with auxiliary definitions and explanatory comments.

The basic data structure in FF0 is the textual table. It is a two dimen-
sional array, the lines of which are called records, and the columns of which
are called fields. A database in FF0 contains exactly one textual table, no
less, no more. Thus, FF0, regarded as a database model, is a single-table
model.

The number of fields in a textual table is a positive integer and is de-
noted by n. This number is fixed and will not vary during the lifetime of the
database. The number of records in a textual table at any particular time is
always a non-negative integer and is denoted by m. This number can vary
during the lifetime of the database, according to the data manipulation op-
erations carried out on the database. By “records and fields of a database”,
we shall mean the records and fields of the textual table associated with
that database.

An alphabet is a non-empty finite set of symbols (characters). For any
given alphabet Γ, Γ∗ is the set of all finite (possibly empty) strings that can
be made up using the symbols in Γ.

Associated with a database is a base alphabet Σ. All entries in that
database’s textual table are finite (possibly empty) sequences of strings from
Σ∗. Note that a textual table is an homogeneous structure, because all
entries have the same “data-type”: sequence of character strings. Also note
that the textual table is not in “first normal form” (relational terminology)
because its entries are not atomic values.

The operation of concatenation of string sequences is denoted by ⊕.
The length of a sequence σ (i.e., the number of string occurrences in σ)

5

is denoted by |σ|. The various string occurrences in σ are denoted with
subscripts: σ = (σ1, . . . , σ|σ|). We shall sometimes treat a sequence as a
set; in those cases, the sequence shall be considered identical to the set
containing exactly those strings that occur in the sequence. For example,
x ∈ σ will mean that x is a string that occurs in the sequence σ.

The fact that the entries of a textual table are sequences of strings, rather
than strings, is to allow for so-called “repeatable fields”. A priori , all fields
in a textual table are repeatable, but there will be a way to restrict this
feature to specific fields only.

The textual table associated with a database is denoted by T . The
records and fields of T are indexed with natural numbers starting with 1.
The entry in the ith record, jth field is denoted by Ti,j .

An entire record of T (seen as a one-dimensional array) is denoted using
a single subscript on T ; for instance, the ith record in T is denoted by Ti.
If R = Ti, then Rj denotes Ti,j . We will often use the variable R to denote
an arbitrary record in the database, and sometimes any record that could
validly be in the database.

A number of various objects are associated with each field. For each j
(1 ≤ j ≤ n), the following objects are associated with field j:

1. A field name FNj , which is an arbitrary symbol. In a database, the
field names must be pairwise distinct.

2. An optionality indicator OPTj , which is simply a boolean value (TRUE
or FALSE).

3. A repeatability indicator REPj , which is also a boolean value.

4. A field definition FDj , which is a (possibly empty) subset of {1, . . . , j−
1}. If FDj = ∅, then field j is said to be a proper field ; otherwise, it
is said to be a calculated field . Note that, since FD1 = ∅, field 1 is
always a proper field.

5. An automatic transformation fj . An automatic transformation is a
total function from Σ∗ to Σ∗. If σ is a sequence of strings, then the
notation fj(σ) denotes the sequence (fj(σ1), . . . , fj(σ|σ|)).

The field name is the symbolic name by which the field will be referred to
in search expressions. The optionality indicator indicates whether the field
can be “omitted” or not. Field j is considered to be “omitted” in record i
iff Ti,j is the empty sequence. Thus, if OPTj is FALSE, then for all records

6

R in the database, |Rj | > 0. The repeatability indicator indicates whether
a field can be “repeated” or not. Field j is considered to be “repeated” in
record i iff |Ti,j | > 1. Thus, if REPj is FALSE, then for all records R in the
database, |Rj | ≤ 1.

The automatic transformation fj is a sort of “pre-processing” that is
done on the strings appearing in field j, and we shall say more about it in
a moment.

The field definition FDj determines where the information in field j
comes from. If FDj = ∅, then the information that ends up in field j is
expected to be entered “by the user” during data entry operations. Other-
wise, the information in field j is “calculated”, using fj , from the information
present in other fields, as indicated by FDj . More precisely, for all records
R in the database, Rj = fj(Rd1 ⊕ · · · ⊕ Rdh

), where d1, . . . , dh are the ele-
ments of FDj , and d1 < · · · < dh. The requirement that FDj be subset of
{1, . . . , j − 1} is imposed only to avoid circularity in the definitions of the
fields.

As can be seen from the above paragraph, the automatic transformation
fj will be applied to all data entering field j whenever field j is a calculated
field. When field j is a proper field, then fj is also expected to be applied
to all data entering the field, in that it should be applied (by the TDBMS)
to the strings entered “by the user”. Thus, the database will satisfy the
condition that for all records R, for all fields j, Rj ⊆ image(fj).

Typical automatic transformations would include stripping of leading
and/or trailing blanks, transforming letters to upper- or lower-case, elim-
inating specific substrings (e.g., punctuation, blanks, initial articles, stop-
words, etc.) Note that an automatic transformation can be the identity.

The purpose of field definitions is to offer the same functionality as the
“multi-field indexes” that can be defined in most existing TDBMS’s. They
are also intended to allow searching the same field with different automatic
transformations (e.g., authors’ names as entered in one field, and trans-
formed to upper-case in another).

Finally, K, an integer between 1 and n, is the key field designation. Field
K is the “primary key” field of the textual table, i.e., for any two records
Ti and Tj , if i 6= j, then Ti,K 6= Tj,K . The condition that both OPTK and
REPK be FALSE is also imposed.

Although the presence of a key field is not necessary in the model, we
chose to include it because most existing TDBMS’s support some form of
“unique identification” of records. Multiple-field keys could have been in-
cluded; however, they render the presentation of the model much more cum-

7

bersome, and we have thus chosen not to include them. Besides, very few
existing systems allow multiple-field keys (a notable exception being the
INMAGIC system [Inm92]).

This ends the structural part of the definition of a database.

3.3 Query language

We now introduce other elements that will allow the formulation of search
expressions or queries. To begin with, we will discuss informally the kind of
queries we want to be able to formulate. We use the example:

(∃AU)[AU 6= "Smith" & AU 6= "Royer"] &

(∀TI)[TI = "Spring" ∨ TI = "Fall"]

The queries we want to formulate are sentences (formulas with no free
variable) in some sort of logical language. In the example, AU and TI
are field names (used as variable names), and = and 6= are predicate names,
representing respectively string equality and inequality. Double-quotes (" ")
delimit string constants, and the other symbols are the usual logical quan-
tifiers, connectives, etc., with their usual meanings.

Intuitively, a query will retrieve from the database those records that
“satisfy” the query. A record will be retrieved iff the query evaluates to
TRUE when the field names it contains are allowed to range over the cor-
responding fields of the record (treated as sets for this purpose). The field
names are quantified because of the possibility of “multiple occurrences”,
i.e., because a field in a record is a sequence of strings, and not just a simple
string.

Thus, assuming field AU contains author names and TI contains titles,
the above example would retrieve exactly those records with at least one
author name other than Smith and Royer, and no title other than Spring
or Fall.

In order to be able to formulate that kind of queries, we now introduce
more objects in the definition of a database.

A finite number q > 0 of two-place predicates P1, . . . , Pq, each defined
over Σ∗×Σ∗, are associated with a database. Corresponding to each predi-
cate Pp (1 ≤ p ≤ q), is a predicate name PNp, which is an arbitrary symbol.
Like the field names, the predicate names must be pairwise distinct.

Before we add the last objects in the definition of a database, we need
to define the logical language L associated with a database.

8

Let Λ be the set of symbols {(,), [,], ∀, ∃, &,∨,¬, ′, "}. Without loss of
generality, we assume that the double-quote symbol (") is not in Σ, and
that no field name FNi or predicate name PNp is in Λ.

We define L to be the set of all sentences that can be constructed with
symbols from Λ ∪ Σ ∪ {FN1, . . . , FNn, PN1, . . . , PNq}, using the following
rules:

1. A variable name is either a field name or a field name followed by one
or more prime symbols (′). We say that the variable name contains
the field name that is part of it.

2. A string constant is a string from Σ∗ immediately preceded and fol-
lowed by the double-quote symbol (").

3. A positive atom is an expression of the form “v PN c”, where PN is
a predicate name, v is a variable name, and c is a string constant (we
use infix notation for predicates).

4. A negative atom is a positive atom preceded by the symbol ¬.

5. An atom is either a positive atom or a negative atom.

6. Formulas are built from atoms in the usual way.

7. A sentence is a formula with no free variable.

It is worthwhile noting that a predicate is always used with one variable
name and one string constant. This is an essential feature of the model,
and of the existing TDBMS’s. Note that most TDBMS’s have a “range”
predicate which is three-place, but is always used with one variable name
and two string constants. We shall say more about such predicates later.

Here is an example of a complex sentence:

(∀AU ′) ¬ (∃TI)[(¬ TI = "Summer") &

(∀AU ′′)[AU ′′ > "Smith" ∨ AU ′ < "Bono"]]

The way the sentences in L are interpreted is somewhat peculiar, and is
based among other things on ideas of many sorted logic [YCC92].

A database record R is said to satisfy (or model) a sentence S ∈ L iff S
evaluates to TRUE under the following rules of interpretation:

1. Each variable name v in S is allowed to range over Rj , where FNj is
the field name contained in v.

9

2. A string constant c, when occurring in a positive atom “v PN c”
in S, is interpreted as the string fj(x), where FNj is the field name
contained in v, and x ∈ Σ∗ is the string obtained by stripping off the
double-quotes from c.

3. Each predicate name PN occurring in S is interpreted as the predicate
Pp, where PN = PNp.

4. All other symbols in S, including quantifiers and logical connectives,
are interpreted as usual.

Naturally, any subexpression starting with (∀v) (respectively, (∃v)), where
v ranges over the empty set, evaluates to TRUE (respectively FALSE).

Note that, according to rule (2) above, the exact string denoted by a
particular occurrence of a string constant in a sentence, depends on the field
name contained in the positive atom that contains that particular string
constant occurrence. This peculiarity is introduced here to reflect the fact
that most TDBMS’s perform on the search terms the same transformations
that they perform on the inverted files entries: for instance, if authors’ names
are stored in upper-case in an inverted file, then the search terms are also
converted to upper-case when searching on this inverted file.

The fact that a record R models a sentence S ∈ L is denoted by R |= S.
Thus, a sentence S retrieves from the database exactly those records R such
that R |= S.

The last objects we introduce as part of the definition of a database are a
query language QL ⊆ L, and a validation expression V AL ∈ QL. The query
language represents all the queries that can be formulated (either directly or
using some concrete syntax outside the model) for retrieving records from
the database. In general (and certainly for the existing TDBMS’s), it will be
a proper subset of L. The sentence V AL expresses a condition that has to
be met by all records in the database; i.e., for all records R in the database,
R |= V AL.

Two sentences S1 and S2 from L are said to be query-equivalent iff for
all possible records R, R |= S1 ⇐⇒ R |= S2. Note that in this definition, we
consider all the records that could validly be in the database, not just those
that happen to be in the database at any particular point of time.

A sentence S ∈ L is said to be expressible in QL iff there exists a sentence
in QL that is query-equivalent to S. The query language QL of a database
is said to be logically complete iff for all S ∈ L, S is expressible in QL.

10

3.4 Data manipulation operations

Although the data manipulation operations are not part of the model, we
have to specify some aspects of how the TDBMS is expected to perform
them. Namely, the TDBMS is expected to always leave the textual table
associated with a database in a state such that all the conditions stated in
the preceding sections are satisfied.

Thus, for instance, the TDBMS shall not allow a record R to be inserted
in the textual table if it is not the case that R |= V AL. Conceptually, we
can imagine that if the “user” ever tried to insert such a record, the TDBMS
would remain in data-entry mode, or would terminate the operation with
an error, leaving the database in its original state. Similarly, the TDBMS
should deny performing any data manipulation operation that would result
in any of the conditions stated in the preceding sections to be violated.

As far as data-entry is concerned, the TDBMS is of course expected to
perform the automatic transformations and the calculations of the calculated
fields, but this does not change in any way its responsibility of verifying that
the database is left in an acceptable condition, and of denying the operation
otherwise.

3.5 An example

We give an example of a database with 3 fields, i.e., n = 3. We take the
base alphabet Σ to be the set of all roman letters (upper- and lower-case)
and decimal digits (0 to 9).

We choose as field names FN1 = AU , FN2 = Y EAR, FN3 = ANY .
We want fields 1 and 2 to be proper fields, and field 3 to be the “grouping”
of fields 1 and 2 (unmodified), thus, we set FD1 = FD2 = ∅, FD3 = {1, 2},
and f3 as the identity. We want the key field to be field 1, so we set K = 1
and, thus, OPT1 = REP1 = FALSE.

The database records are expected to contain a single author name in
AU , and the different years in which that author published something as
multiple occurrences of Y EAR. Since Y EAR and ANY must accept mul-
tiple occurrences, we set REP2 = REP3 = TRUE. We choose to declare
Y EAR as optional, thus, we set OPT2 = TRUE. The setting of OPT3 has
no effect, since ANY will always have something in it, because it “covers”
the key field (AU).

We do not want any modification or special validation on the author’s
name, so we set f1 as the identity. However, we would like the information

11

entered as “years” to be checked to be numeric. We can do this by setting f2

to be the function that leaves unchanged any string that is entirely numeric,
and maps all other strings to the empty string. The validation expression
(see below) will complete the validation “mechanism”.

As predicates, we use =, 6=, ≤, ≥, <, and >, with precisely these
symbols as predicate names. The exact meaning of ≤, ≥, <, and > should
be thoroughly described, but we shall only say that x ≥ "" for all x ∈ Σ∗,
where "" denotes the empty string. We will suppose that the query language
QL is equal to the logical language L of the database. Finally, we set the
validation expression V AL to be the sentence “(∀Y EAR)[Y EAR 6= ""]”.
Thus, only numeric information will be accepted in Y EAR.

Note that the sentences “(∃Y EAR)[Y EAR = ""]” and “(∃Y EAR)
[Y EAR = "abc"]” are query-equivalent in the context of this particular
database, because no record that could validly be in the database can satisfy
either sentence. The sentences “(∃AU)[AU = "Smith"]” and “(∀AU)[AU =
"Smith"]” are also query-equivalent, because AU does not admit multiple
occurrences and is not optional.

An example of a record that could validly be in the database is

(("Royer"), ("1990", "1991"), ("Royer", "1990", "1991"))

The records that contain something (i.e., at least one occurrence) in
Y EAR can be retrieved with the sentence “(∃Y EAR)[Y EAR ≥ ""]”.

Note that, in general, any specific TDBMS will allow the definition of
databases with only a restricted choice of base alphabet, automatic trans-
formations, predicates, predicate names, and query language.

3.6 Discussion

We could have used sets of strings instead of sequences of strings for realizing
multiple occurrences. However, we chose sequences for two reasons: (i)
most existing TDBMS’s use the equivalent of sequences, and (ii) in some
cases, it could make sense to have twice the same string; for instance, in a
bibliographic database, it is conceivable that two different authors of a same
work end up with an identical controlled form of their name. We could also
have used multi-sets, but chose sequences for reason (i).

The reader may be surprised by the absence of the inverted files (or
“indexes”) from the model. The reason is that inverted files constitute one
implementation technique (albeit popular) which, in accord with the data
independance principle, should not intervene in the abstract definition of

12

the model. In this respect, inverted files are similar to indexes in relational
databases: by necessity, the data definition language of any particular sys-
tem allows defining them, but they are not part of the formal model.

Although there is only one data-type per se in the model, it should be
clear from the example above, that there are sufficient validation capabil-
ities in the model to amply realize all forms of “typing” found in existing
TDBMS’s.

A problem with TDBMS’s is that sometimes, one would like to have
“parallel fields”, e.g., an author field and a date field such that the ith
author corresponds to the ith date, and be able to formulate queries that
take into account this correspondance. Some TDBMS’s allow doing the
equivalent of this with subfields. For the above example, we would have a
single field split up into two subfields separated by a delimiter. The MARC
format of bibliographic records uses this device extensively [Jac92].

Working with subfields involves locating and manipulating substrings
within strings, and we have found that the best way to introduce them in a
model is together with word-oriented operations. Thus, we shall not discuss
subfields until we introduce word-oriented operations.

4 Logical completeness

4.1 Existing TDBMS’s

With most TDBMS’s, the query language of a database is limited to sen-
tences with a very specific form and does not include of all L.

A sentence S ∈ L is said to be in first restricted form (RF1) iff (i) no
quantifier occurs in S in the scope of another quantifier, (ii) all variable
names occurring in S are field names (no primes), (iii) all quantifiers oc-
curring in S are ∃’s, and (iv) all subexpressions of S that are within the
scope of a quantifier are restricted to be a conjunction of atoms. A sentence
S ∈ L is said to be in second restricted form (RF2) iff it is in RF1, and all
subexpressions of S that are within the scope of a quantifier are restricted
to be atoms.

It is easy to see that, with most TDBMS’s, the query language of a
database is restricted to the sentences in RF2.1

1In fact, it is usually further restricted to sentences in RF2 in which only positive
atoms occur. This is not really a restriction if the set of predicates used is closed under
complementation; however, in most TDBMS’s, this is not the case, and thus, not all
queries in RF2 are expressible. For example, the predicate 6= is usually not present, with

13

A consequence of this restriction is that “range” queries (e.g., all authors
between "A" and "L") cannot be expressed by the conjunction of the pred-
icates ≤ and ≥. What we want to do is “(∃AU)[AU ≥ "A" & AU ≤ "L"]”.
This is an RF1 query, but it can be shown not to be query-equivalent (in
general) to any RF2 query, even when RF2 queries are allowed to include all
of the predicates mentioned in our example database above. (The “obvious”
RF2 formulation “(∃AU)[AU = "A"] ∨ · · · ∨ (∃AU)[AU = "L"]” does not
work, because, with the usual “alphabetical order” definition of ≤, there
are infinitely many strings x such that "A" ≤ x ≤ "L".) Thus, some form
of range predicate (a three-place predicate) is usually added to the query
language, for the sole purpose of being able to express such queries.

4.2 Suggested generalization

Range queries are not the only ones that are not expressible with RF2
queries. The following RF1 query is another example: “(∃AU)[AU 6=
"Case" & AU 6= "Royer"]”. We claim that such queries are meaningful
and interesting, and would justify generalizing the query languages of ex-
isting systems to include all RF1 queries. This would by the same token
eliminate the necessity of adding specific predicates for range queries (al-
though of course they could be left in for convenience as shorthands in the
concrete syntax).

In fact, it can be shown that if the query language of a database includes
all RF1 queries, then it is logically complete. The proof is similar to the stan-
dard proof that any pure monadic sentence is equivalent to a pure monadic
sentence containing exactly the same predicate names and only one variable
name [BJ80]. Thus, generalizing the query languages of existing systems to
include all RF1 queries would greatly increase their expressive power.

As far as implementation is concerned, the proposed extension is fully
compatible with the inverted file technique. An empirical “confirmation” of
this fact is that most TDBMS’s realize their range predicate by working on
inverted files. Thus, the proposed generalization is practically feasible.

the consequence that sentences like “(∃AU)[¬ AU = "Smith"]” are not expressible. Note
that the latter is not in general query-equivalent to “¬ (∃AU)[AU = "Smith"]”.

14

Acknowledgment

We wish to thank Hervé Caussinus for many fruitful discussions and Cheval
Cavelier for encouragement.

References

[Bla90] Blair, D.C. Language and Representation in Information Retrieval. Else-
vier, Amsterdam, 1990.

[BC76] Bookstein, A. and Cooper, W. A general mathematical model for informa-
tion retrieval systems. Library Quarterly , Vol. 46, No 2, 1976, 153–167.

[BJ80] Boolos, G.S. and Jeffrey, R.C. Computability and Logic. Second Edition,
Cambridge University Press, 1980.

[Inm92] INMAGIC Plus: User’s Manual, Version 1.0 , INMAGIC Inc., Cambridge,
MA, 1992.

[Jac92] Jacquesson, A. L’informatisation des bibliothèques: historique, stratégie
et perspectives. Collection Bibliothèques, Éditions du cercle de la librairie,
Paris 1992.

[NMU91] Ng, Y.K.; Melton, A. and Unger, E. A method for constructing gen-
eralized Non-Normal-Form models. Proceedings, 19th Annual Computer
Science Conf., ACM Press, 1991, 146–153.

[TL88] Tenopir, C. and Lundeen, G. Managing Your Information; how to design
and create a textual database on your microcomputer. Neal-Schuman, New
York, 1988.

[YCC92] Yang, J.S.H.; Chin, Y.H. and Chung, C.G. Many-sorted first-order logic
database language. The Computer Journal , Vol. 35, No 2, 1992, 129–137.

15

