
Querying Hierarchical Text and Acyclic Hypertext

with Generalized Context�Free Grammars

Yves MARCOUX
�

Martin S�EVIGNY
y

EBSI� Universit�e de Montr�eal
C�P� ����� Succ� Centre�ville� Montr�eal� Qu�ebec� Canada� H�C �J	
E�mail
 marcoux�ere�umontreal�ca � msevigny�sympatico�ca

Abstract

We present a formal data model and query language for hierarchically structured text and acyclic
hypertext� The data model is related to SGML �Standard Generalized Markup Language� ISO
��	�
 and the retrieval mechanism is based on pattern�matching using context�free grammars
�CFGs
 with generalized regular expressions on the right�hand sides of productions� This novel
approach is particularly well suited for dealing with recursive elements� and de�nes a very ex�
pressive query language exploiting both the structure and the contents of the text� The language
includes complementation and intersection operations� We also discuss an algorithm for an e�cient
implementation of a search engine based on the model�

Keywords

SGML� Structured Documents� Context�Free Grammars� Information retrieval� Structured Text�
Structured Queries� Hypertext

�Supported by a grant from the Social Sciences and Humanities Research Council of Canada�
ySupported by a grant from the National Sciences and Engineering Research Council of Canada�



� Introduction

As the use of global networks increases� it is becoming every daymore obvious that the development
of search mechanisms for retrieving relevant material from the mass of available information is one
of the prime challenges facing the IR community today� One important subproblem of this gen�
eral goal is that of searching for relevant information within databases of structured text� Already
today� a vast portion of the information available through global networks is in the form of struc�
tured text� be it HTML �HyperText Markup Language
� SGML �Standard Generalized Markup
Language� ISO ��	�
� XML �Extensible Markup Language
� or HyTime �Hypermedia�Time�based
Document Structuring Language� ISO ��	��
 �Gol��� DD��� BS�	�� No solution to the general
problem of network information retrieval can be quite satisfactory if it does not also address the
issue of searching through structured text�

There are basically two research directions that can be taken for investigating IR in structured
text
 the general hypertext approach� in which the topology of the text can be an arbitrary graph�
and the hierarchical text approach� in which the topology is restricted to be a tree� Although
less general than the hypertext approach� the hierarchical approach is important because it is a
natural and widely used way of structuring text� and because the restriction to trees allows the
use of valuable search mechanisms �e�g�� parsing
 not applicable to unrestricted hypertext�

The retrieval model presented here di�ers from previously de�ned models because it applies not
only to hierarchical text� but to acyclic hypertext in general� This feature is interesting because
important acyclic subtopologies can often be identi�ed within hypertext networks� for instance�
the Web� The data model is closely related to the canonical form of SGML documents�

Another element of originality is the use of generalized context�free grammars �CFGs
 for
expressing queries� This approach gives rise to a very powerful retrieval language� one interesting
feature of which is the ability to express very sophisticated criteria based on the nesting of elements�
In particular� elaborate nesting criteria involving recursive elements �e�g�� a section within a section
or a list within a list
 can be expressed� Recursive elements are permitted� and even encouraged�
by structured text standards such as SGML �for example� see �TW��� p� ����
 and HyTime�
Nevertheless� most retrieval models introduced so far either do not allow recursive elements� or
have no powerful capabilities for expressing search criteria involving them�

One of the design objectives of the model was to preserve the simplicity and naturalness of
common word�oriented retrieval operations� like adjacency� proximity� etc� Thus� we designed the
model so that all these existing operations can be �imported� directly into it� Another objective
is to attain a very high level of generality� while at the same time making sure that the retrieval
mechanisms are e�ciently implementable� Our goal is to delimit what it means to search through
hierarchically structured text and acyclic hypertext in a general� but also practical� way�

About this paper

When an information retrievalmodel is introduced� it can be described and analyzed on at least two
di�erent levels
 the mechanical aspects of the retrieval operations� and the amount of �semantic
contents� that can be put into the data structures and retrieval mechanisms by judicious use�



Ultimately� the potential bene�ts of a model in real�life applications are related more to the second
aspect than to the �rst one� However� from a research perspective� the purely mechanical aspects
of an IR model are also of interest in themselves� We believe that separating the mechanical
aspects of a model from its semantic ones �when possible
� reveals more clearly the power of the
underlying operations� The model we present here lends itself to such a separation� and we have
chosen to concentrate in this paper on its mechanical aspects�

We could argue that the logical structure of text does convey semantic information� and that
structure based retrieval is per se a form of semantic retrieval� however� we prefer saying that we
are deliberately presenting the model from a purely mechanical point of view� even though we
realize that the real interest of a model lies in its ability to capture the semantic nature of things
�ability which could be investigated in future experimentation
�

� Related work

While they have tackled both the hypertext and the hierarchical text approaches� implemented
solutions to searching in structured text have so far been rather modest� The most successful
endeavour is probably the PAT software package by Open Text Corporation� which is widely
used in various settings� among others� as a Web search engine� Other end�user packages for
browsing and managing SGML documents �for example Explorer from SoftQuad or Dynatext
from Electronic Book Technologies
 allow users to formulate queries exploiting the structure of
the underlying SGML documents� but these capabilities are fairly limited and usually don�t go
much beyond the use of SGML elements as index identi�ers�

As far as research is concerned� a fair amount of work has been devoted to IR in both hierarchi�
cal text and hypertext� However� the matter is far from closed on either path� In the hierarchical
line� a number of models have been introduced in the past� and an excellent survey �as well as an
original model
 can be found in �NB����

An approach such as grammatical tree matching �KM��� KM��� uses grammars as a document
model for structured text� Queries are represented by giving a tree pattern� which is then matched
against the whole tree�like structure of the documents� The parsed strings model �GT�	� also uses
a grammar to represent structured text� and de�nes a manipulation language with operations on
objects such as parsed strings or subtrees� along with operators for selecting and transforming
part of the tree�structured text� According to �NB���� these two models are very expressive
but lack e�cient implementation� In �KS�	�� Kuikka and Salminen also use grammars as part of
�templates�� by which portions of structured text can be extracted� In �Bur��� Bur��a�� Burkowski
introduces an algebra for hierarchically structured text� based on the concepts of �contiguous
extents� and �concordance lists��

Other approaches have been taken� like extending traditionnal command languages or SQL to
handle structured documents �Mac��� Mac���� In general� however� these approaches give rise to
query languages that are less expressive than the aforementioned models�

The recently approved ISO standard �Document Style Semantics and Speci�cation Language�
�DSSSL
 �ISO��� includes the �Structured Document Query Language� �SDQL
� designed to ma�



nipulate and extract any part of SGML documents� SDQL adds retrieval primitives to the expres�
sion language of DSSSL� which is itself a variant of the Scheme programming language�

� The data model

��� Basic de�nitions

Let N� denote the set of positive integers�
An alphabet is a non�empty �nite set of characters �symbols
� If A is an alphabet� the A�

denotes the set of �nite strings over A� and A� denotes the set of non�empty �nite strings over
A� Character constants are written using double quotes� for example
 �a�� �string�� String
concatenation is denoted by a comma
 ���� ��� � ����� The length of �i�e�� the number of
character occurrences in
 a string w is denoted by jwj�

For graph�related de�nitions� we follow as closely as possible �CLR����
A �nite ordered directed multi�graph �FODMG
 is a pair G � �V�E
� where V is a �nite non�

empty set of vertices �or nodes
� and E is a �nite partial function from V �N� to V such that for
all v � V and all n � �� if E�v� n
 is de�ned� then E�v� n� �
 is also de�ned� The partial function
E is called the child�function of G�

I� E�u� n
 � v for some given n� we say that v is the n�th child of u� and that u is a parent of
v� we also say that v is adjacent to u� Note that a vertex v can be both the n�th and the m�th
child of the same vertex� with m �� n� We de�ne the out�degree of vertex v� denoted by ��v
� as
the largest n for which E�v� n
 is de�ned� if such an n exists� and � otherwise� Note that ��v
 is
the number of �not necessarily distinct
 children of v�

A path of length n � � �n � �
 from u to v is a sequence of n vertices �v�� � � � � vn
 such that
v� � u� vn � v� and vi is adjacent to vi�� for each i satisfying � � i � n� We say that v is reachable
from u i� there exists a path from u to v� Note that there exists a length � path from any vertex
to itself� thus� any vertex is reachable from itself�

We say that G is acyclic i� there exists no positive length path from any vertex to itself�
A �nite ordered directed multi�tree �FODMT
 is an acyclic FODMG G � �V�E
 in which there

exists a vertex r � V such that all vertices in V are reachable from r by a �possibly empty

directed path� It is easy to show that there can only be one such vertex r� we call it the root of
G� It is also easy to show that r is the only vertex that is not adjacent to any other vertex�

A sequence of consecutive siblings is either the sequence �r
� where r is the root of G� or a
�possibly empty
 sequence of �not necessarily distinct
 vertices �v�� � � � � vn
� �n � �
 such that there
exist v � V and k � � for which vi � E�v� k � i
 as soon as � � i � n�

A leaf is a vertex without any child� i�e�� with an out�degree of �� There is always at least one
leaf in G� The root r is a leaf i� it is the only vertex in V � A vertex that is not a leaf is called an
internal node�



��� Document�bases

We de�ne a document�base D as follows�
The basic component of D is a FODMT ��nite ordered directed multi�tree� see above
 G �

�V�E
 comprising at least two vertices� The root of G is denoted by r� The �topology� of the
document�base is determined by G� We refer to the vertices in V as the vertices of the document�
base�

The document�base D also comprises a markup alphabet M � and a text alphabet T � Without
loss of generality� we assume that none of the characters ���� ���� ���� ���� ���� �	�� �
�� nor
the double quote character �� is in M � T �

Finally� D comprises a total contents�function � 
 V � �M� � T �
 such that� for all v� if v is
a leaf� then ��v
 � T �� and if v is an internal node� then ��v
 �M��

A string of generated�text is associated with each vertex of D by way of a total generated�text
function � 
 V � �f���� ���� ���g �M � T 
�� which is recursively de�ned as follows


��v

d
� ��v
 if v is a leaf�

��v

d
� ���� ��v
� ���� ��E�v� �

� � � � � ��E�v� n

� �����

where n � ��v
� otherwise�

The function � is easily generalized to sequences of vertices as follows


���

d
� ��v�
� � � � � ��vn
 where � � �v�� � � � � vn
� n � ��

���

d
� �� if � is the empty sequence�

In the remainder of this paper� we suppose D is a document�base with FODMT G � �V�E
�
root r� associated alphabets M and T � and functions � and �� as de�ned here�

��� Comments on the data model

Here are some intuitive comments on our data model�
The document�base is the body of data against which search queries are formulated� Queries

will return results that are sequences of vertices from V � The FODMT �together with function �

can be thought of as an abstract view of the document�base� whereas ��r
 is its actual expanded
text� seen as a sequential character string� The FODMT is much richer than ��r
� because it
allows the representation of text�segment reuse and of acyclic hypertextual structures �by the fact
that nodes can have multiple parents
�

We de�ne a document�base as a FODMT� instead of simply as the character string ��r
� for
many reasons� The most important one is to allow the de�nition of query results as sequences of
nodes� They can thus be browsed by hypertextual navigation and linked to the actual contents of
the document�base� Another reason is to allow for extensions of the query language that include
node identity criteria�

The data model is obviously inspired by SGML and HTML� in particular� the text ��r
 of the
document�base includes start�tags �strings of the form �TITLE�� �PARA�� � � � 
 and end�tags ����

that delimit segments of text�



The markup alphabet comprises those characters that can be used to form generic IDs� i�e��
identi�ers found within start�tags� The text alphabet comprises those characters that can occur
between tags� i�e�� in the contents of leaves� Note that all start�tags are given matching end�tags
by ��

The text ��r
 of any document�base always corresponds to some valid SGML document�
instance� However� there are important di�erences between SGML and our data model� among
which we point out the following �this list can be skipped by readers unfamiliar with SGML



� The text ��r
 of a document�base is not restricted to conform to any particular DTD �Doc�
ument Type De�nition
 and includes no SGML declaration or document type declaration �it
is thus closer to an XML well�formed document than to an SGML valid document �BS�	�
�

� An SGML declaration specifying SHORTTAG�YES is always implied� to allow the use of empty
end�tags ����

� In the FODMT� there can be sequences of two or more consecutive sibling leaves� This is
as though consecutive �PCDATA segments were allowed within an element� However� as far
as the text ��r
 of the document�base is concerned �and as far as retrieval operations are
concerned
� such sequences of consecutive sibling leaves are indistinguishable from single
�PCDATA segments� We permit them mainly to allow for extensions of the query language in
which the markup associated with speci�c nodes can be ignored�

� There is no notion of attribute� A possible way to treat attributes is to consider them as
sub�elements� The capabilities of the query language �in particular� the presence of the
intersection operation
 render such a treatment fairly easy�

� SGML�s empty elements can only be represented by internal nodes having a single child�
which is a leaf whose contents is the empty string� The generated text of such vertices is of
the form �A����� rather than the correct SGML �A� �with no end�tag
�

� We require the document�base to have at least two vertices mainly because� with only one
vertex� the generated�text would have no start� or end�tag� and thus would not be a valid
SGML document�instance�

��� Segments

A segment of D is a pair of integers �x� y
 such that � � x � y � j��r
j � �� A segment �x� y

is said to be empty i� x � y� A segment �x� y
 includes another segment �x�� y�
 i� x � x� and
y� � y� Then� �x�� y�
 is said to be a subsegment of �x� y
� We say that �x� y
 starts with �x�� y�
 i�
x � x�� We say that �x� y
 ends with �x�� y�
 i� y � y��

Let �x� y
 be a segment� The text of �x� y
� denoted � �x� y
 is de�ned to be the empty string
i� x � y� and otherwise� the portion of ��r
 ranging from character positions x to y � � if x � y

�positions start at �
� We now de�ne several types of segments based on the properties of x� y
and � �x� y
� A start�tag is a string of the form �m�� where m �M�� and an end�tag is the string
����



Genid segments I� �x� y
 is a segment such that � �x� y
 is a start�tag� then �x � �� y � �
 is
said to be a genid segment�

Well�formed segments We say that �x� y
 is a well�formed segment �WFS
 i� all of the fol�
lowing statements hold


�� � �x� y
 has an equal number of start�tag and end�tag occurrences�

�� no pre�x of � �x� y
 has more end�tag occurrences than start�tag occurrences�

�� either � �x� y
 is non�empty and starts with a start�tag� or x � � and character position
�x� �
 of ��r
 is a ����

�� either � �x� y
 is non�empty and ends with an end�tag� or y � j��r
j and character position
y of ��r
 is a ����

Single�element WFSs If �x� y
 is a WFS and� in addition� � �x� y
 starts with a start�tag and
ends with the matching end�tag �i�e�� no proper pre�x of � �x� y
 has an equal positive number of
start� and end�tags
� then we say that �x� y
 is a single�element WFS�

Text�only WFSs If �x� y
 is a WFS and� in addition� � �x� y
 contains no occurrence of �� � or
�� then �x� y
 is said to be a text�only WFS�

Compound WFSs If �x� y
 is a WFS but is neither a single�elementWFS nor a text�only WFS�
then it is said to be a compound WFS�

Intuitively� a WFS delimits a well�balanced and complete portion of ��r
� Note in particular
that a WFS cannot start or end in the middle of a sequence of characters located between tags�
it must totally include or totally exclude any such sequence� Also� a single tag �or part of a tag

does not constitute a WFS� An empty WFS is necessarily a text�only WFS� and necessarily falls
between two adjacent tags�

��� Mapping WFSs to sequences of nodes

The retrieval operations of our model will be de�ned in terms of pattern�matching on the text ��r

of the document�base� However� the results of queries will be de�ned as sequences of vertices from
V � Thus� we need to be able to map segments of ��r
 back to the vertices of V that �generate�
them� This mapping is very natural� but its formal de�nition is rather complex� mainly because
the text generated by a vertex is �used� more than once to form ��r
� if that vertex has more
than one ancestral line�

We �rst de�ne recursively the function 	� which associates with each vertex v � V the set of
all locations where v�s generated text is �used� in the construction of ��r
�



Algorithm for 	 
 V � �N
�

Input� v � V

IF v � r THEN RETURN f�g END IF

X 	 

FOR EACH �u� n
 such that E�u� n
 � v

FOR EACH x � 	�u

X 	 X � fx� j��u
j� � � j��E�u� �
� � � � � E�u� n� �

jg

END FOR

END FOR

RETURN X

Note that the j��u
j� � term in the above de�nition is to allow for the length of the start�tag
of the parent u of v� Also note that� when n � �� j��E�u� �
� � � � � E�u� n� �

j � ��

Finally� we de�ne the function 
 that maps any WFS to the node or sequence of nodes in V

that generates it� The idea is simple� but care must be taken to properly treat leaves with empty
contents�

Let �x� y
 be a WFS� If �x� y
 is a single�element WFS� then there is a unique v� � V such
that x � 	�v�
 and y � x � j��v�
j� and 
�x� y
 is de�ned as the sequence �v�
� Otherwise� for
each v � V � de�ne zv as the unique z � 	�v
 such that z � x and z � j��v
j � y if such a
z exists� and � otherwise� Note that zr is always equal to �� Then� let u � V be such that
zu � maxv�V �zv
� There is always a unique such u and it is always an internal node� Intuitively�
u is the vertex of D that most tightly covers �x� y
� Now� let n� be the smallest n � N� for
which zu � j��u
j � � � j��E�u� �
� � � � � E�u� n � �

j � x� and let n� be the largest n � ��u
 for
which zu � j��u
j � � � j��E�u� �
� � � � � E�u� n

j � y� Then� 
�x� y
 is de�ned as the sequence
�E�u� n�
� � � � � E�u� n�

 �if n� � n�� then 
�x� y
 is the empty sequence
�

Note that empty WFS are always mapped either to the empty sequence or to a sequence of
empty sibling leaves�

� Retrieval operations

��� Intuitive overview

The retrieval mechanism of the model is based on pattern�matching using Context�Free Grammars
�CFGs
 with generalized regular expressions on the right�hand sides of productions� The general�
ized regular expressions ��expressions�� for short
 are of two disjoint types
 genid �expressions and
ordinary�expressions� Expressions can �match� certain segments of D�

One important class of ordinary�expressions are word�expressions� They are of the form
	word
expression
� Without loss of generality� we suppose that word�expressions contain no
	 or 
 characters� Word�expressions are written in a language independent of the rest of the
model� This language could be based� for instance� on word�oriented boolean operations� adja�
cency� proximity� etc� Word�expressions can only match text�only WFSs� Moreover� they are the



only expressions that can match non�empty text�only WFSs� For example� 	library
 might be
a word�expression matching any text�only WFS containing the word �library��

A genid�expression is used to match collectively a number of generic IDs� For instance� if a
genid�expression represents all of M�� then it would match all occurrences of all generic IDs� If
it represents a single generic ID� then it would match only occurrences of this speci�c generic ID�
For example� TITLEmight be a genid�expression matching all occurrences of the generic ID TITLE�

One way to obtain an ordinary�expression is to include a genid�expression � in a construction of
the form ���������� where � is another ordinary�expression� The ordinary�expression ���������
will match any single�element WFS that starts with a start�tag containing a generic ID matched
by �� and that has a contents matching �� For example� ��TITLE�	library
���� could be
an ordinary�expression matching any single�element WFS with generic ID TITLE and having a
contents composed of one text�only WFS containing the word �library��

One or more ordinary�expressions can be combined with various connectors to yield other
ordinary�expressions� The set of strings represented by the resulting expression is de�ned in terms
of the set�s
 of strings represented by the original expression�s
� For example� �� � �� will
represent the union of the sets represented by � and �� and ���� will represent the Kleene closure
of the set represented by ��

A query Q on D is a generalized CFG� i�e�� a CFG in which the right�hand sides of the
productions are ordinary�expressions� Each non�terminal of Q is also considered an ordinary�
expression� In order for a query to return anything� Q�s start�symbol must match the segment
��� j��r
j � �
� i�e�� the whole document base� What is returned as results of the query� however�
depends on how it is formulated� Indeed� we allow some ordinary�subexpressions to be underlined
in the query� and which subexpressions are underlined is what determines the results returned�
Roughly speaking� if a segment �x� y
 is matched by an underlined subexpression of the query�
then the sequence 
�x� y
 will be returned as a result� However� as we shall see formally below� the
matching must occur in the context of a global matching of the document�base byQ�s start�symbol�

��� Generalized CFGs

A query Q on D is a generalized CFG� which we now de�ne� We assume the reader is familiar
with CFGs �see� for example� �HU	��
�

The set of terminals of Q is f���� ���� ���g �M � T � Q has a �nite set of non�terminals�
denoted N� A distinguished non�terminal S � N serves as the start�symbol of Q� For each non�
terminal A � N� there is exactly one production in Q with A as a left�hand side� We call it
the A�production� The right�hand side of the A�production is an ordinary�expression� as de�ned
hereafter� We must �rst de�ne genid�expressions�

����� Genid�expressions

Due to space limitations� we introduce here a very simple form for genid�expressions� however� they
can be de�ned with as much pattern�matching capability as ordinary�expressions �see �MS�	�
�
We de�ne genid�expressions �and their semantics
 by the following rules




�� For all x � M�� x and �x are genid�expressions� they represent respectively the sets fxg
and M� � fxg�

�� any is a genid�expression� it represents the set M��

�� Nothing else is a genid�expression�

����� Ordinary�expressions

Ordinary�expressions are de�ned by the following rules


�� Any word�expression is an ordinary�expression�

�� For each A � N� A is an ordinary�expression�

�� If � is a genid�expression and � is an ordinary�expression� then ����� ���� is an ordinary�
expression�

�� If � and � are ordinary�expressions� then ��� ��� �� � ��� ����� ����� ����� �� � ���
and ���� are also ordinary�expressions�

�� Nothing else is an ordinary�expression�

We immediately point out that� because of the presence of the � �intersection
 and � �complemen�
tation
 connectors� our grammars can generate languages that are not context�free �context�free
languages are not in general closed under intersection or complementation
� However� as we
shall see� the presence of these connectors does not change the basic parsing algorithm� nor its
complexity�

Without loss of generality� we assume that the set of non�terminals is disjoint from the set of
terminals and from the set of connecting symbols used to form ordinary�expressions�

����� Syntactic restriction to avoid inconsistency

The non�terminals of Q are further subject to the following special condition� to ensure that the
use of negations ��
 does not later lead to inconsistencies� Consider the directed graph which has
N as set of vertices and in which �A�B
 is an edge i� B appears anywhere in the A�production� We
say that �A�B
 is a special edge i� B appears in any negated subexpression of the A�production�
Then� no cycle of that graph is allowed to contain any special edge� Thus� for example� obviously
inconsistent productions of the form A� ��A
 are forbidden�

����� Segments matching an ordinary�expression

Certain segments of D can match certain ordinary�expressions� according to the following rules�
Let 
 be a genid� or ordinary�expression�



�� If 
 is a word�expression� then it is matched by any WFS �x� y
 such that � �x� y
 is in the
set of strings represented by 
� The semantics of word�expressions is not included in the
present model� For the sake of examples� we assume that an expression of the form 	word


represents the set of all strings from T � that contain the word word� and that 	�
 represents
all of T ��

Note that only text�only WFSs can match a word�expression�

�� If 
 is a non�terminal� and a WFS �x� y
 matches the right�hand side of the 
�production�
then �x� y
 also matches 
�

�� If 
 is a genid�expression� then it is matched by any genid segment �x� y
 such that � �x� y

is in the set of strings represented by 
�

�� If 
 is of the form ���������� then it is matched by any WFS �x� y
 such that � �x� y
 is of
the form �a�b���� where a matches � and b matches ��

Note that only single�element WFSs can match an expression of the form ����������

�� If 
 is of the form ��� ��� then it is matched by any WFS �x� y
 such that there exists a k�
satisfying � � k � �y � x
� for which �x� x� k
 matches � and �x� k� y
 matches ��

�� If 
 is of the form ����� then it is matched by any WFS �x� y
 that either is empty� or is
such that there exists a k� satisfying � � k � �y � x
� for which �x� x � k
 matches � and
�x� k� y
 matches �����

	� If 
 is of the form ����� then it is matched by any WFS �x� y
 such that there exists a k�
satisfying � � k � �y � x
� for which �x� x� k
 matches � and �x� k� y
 matches �����

�� If 
 is of the form �� � ��� then it is matched by any WFS that matches � or ��

�� If 
 is of the form ����� then it is matched by any WFS that either is empty� or matches ��

��� If 
 is of the form �� � ��� then it is matched by any WFS that matches both � and ��

��� If 
 is of the form ����� then it is matched by any WFS that does not match ��

Note that� because of the special condition introduced in x ������ the last rule does not lead to
inconsistency�

��� Results of a query

We can now establish for any given queryQ onD� whetherQ is matched by the segment ��� j��r
j�
�
� and thus� whether Q can return any results or not� However� we still need to de�ne what the
results will be� in the case Q does return something�

First� we allow certain ordinary�expressions in Q to be underlined� The underlining is done
in such a manner that an expression can be underlined independently from its subexpressions�



Syntactically� this could be realized by underlining the opening parenthesis � or bracket 	 of the
expressions�

Second� we de�ne a scheme by which the results of a query are de�ned� based on the underlining
of expressions in Q� Due to space limitations� we de�ne here a very simple scheme� in �MS�	�� we
present a much more powerful one�

The idea of the simple scheme is to associate certain ordinary�expressions in Q to certain WFSs
of D according to some rules� The associations are done in a top�down manner� and in a such
a way as to take into account all possible matchings of Q by D� At the end of the association
process� i� a segment s is associated with any underlined expression� then 
�s
 will be a result of
Q� Thus� the overall result of a query is a set of sequences of vertices from V �

Here are the rules by which we associate ordinary�expressions found in Q to WFSs of D� Note
that zero� one� or more than one expression can be associated with any given WFS� and that
only �but not necessarily all
 expressions matching a WFS will ever be associated with it� Let 

be any ordinary�expression occurrence found in Q �
 can be underlined or not� and can contain
underlined subexpressions or not
�

�� If S �the start symbol of Q
 is matched by ��� j��r
j��
� then we associate S to ��� j��r
j��
�

�� If 
 is a non�terminal and is associated with a WFS� then we also associate the right�hand
side of the 
�production to the same WFS�

�� If 
 is of the form ��������� and is associated with WFS �x� y
� then we associate � with
�x� k� y � �
� where k is the length of the initial start�tag of � �x� y
�

�� If 
 is of the form ��� �� and is associated with a WFS �x� y
 then� for all k such that
� � k � �y � x
� if � matches the WFS �x� x� k
 and � matches the WFS �x� k� y
� then
we associate � with �x� x� k
 and � with �x� k� y
�

�� If 
 is of the form ���� or ����� and is associated with a WFS �x� y
� then for all k such
that � � k � �y�x
� if � matches the WFS �x� x�k
 and ���� matches the WFS �x�k� y
�
then we associate � to �x� x� k
 and ���� to �x� k� y
�

�� If 
 is of the form ���� and is associated to a non�empty WFS� then we associate � to the
same WFS�

	� If 
 is of the form �� � �� and is associated to a WFS �x� y
� then we associate � with
�x� y
 i� � matches �x� y
� and � with �x� y
 i� � matches �x� y
�

�� If 
 is of the form �� � �� and is associated to a WFS �x� y
� then we associate both �

and � to �x� y
�

It can be shown that this association process always terminates�



� Comments and examples

The retrieval language is inspired by SGML DTDs� however� there are important di�erences�
Among others� regular expressions can be ambiguous in our model� but not in SGML� Also�
complementation and intersection are absent from SGML� Finally� the fact that productions do
not necessarily generate markup gives our model the full expressiveness of CFGs� and in fact� more
�because of intersection and complementation
�

In all examples� we omit parentheses whenever possible and convenient� We also assume that
� is an ordinary non�terminal de�ned by


� � ���� � 	�
 � ��any������

where 	�
 is the word�expression matching all of T �� The non�terminal � will thus match any
WFS� We also assume� except where otherwise indicated� that S �the start�symbol
 is de�ned as


S � ��� R� �� � ��any�S����

where R is a non�terminal that will vary with each example� R will thus� in e�ect� be searched for
in the whole document�base� As far as underlining is concerned� we shall only underline expressions
of the form ���������� and we shall do it by underlining the opening ��

Example � Titles of sections that follow any section having the word �painting� in its title�

R� ��SEC���TI�	painting
����������SEC���TI�	�
��������

Note the underlined ��

Example � Bibliographies of chapters containing two or more paragraphs containing the word
�painting��

R� �CHAP��� P� �� P� �� ��BIB���������

P � �PAR�	painting
���

We now illustrate the use of negation by an example with two solutions�

Example � Sections that do not immediately contain a title�
�


R� ��SEC������ ����any��� ��TI������� �����

�


R� �SEC����TI����� � 	�
�����

The next two examples illustrate the use of recursive non�terminals�



Example � Elements immediately containing the word alarm� except if located anywhere within
a WARNING�

S � ��WARN�	alarm
��� � ��WARN� �� S� � ���

Example � Titles located at an even�numbered level of depth� counting from the root of the
document base�

S � �any� �� ��TI������� � ��� � �any� �� ��any� �� S� � ����� � ���

We conclude with an example� inspired by nested lists in HTML� which combines recursive
non�terminals and negation�

Example � Lists ��UL� elements� for unordered list
 that do not contain any nested lists anywhere
in them�

R� ��UL��BUL����

BUL� �� ��UL����� � �any�BUL����� �

Here� the non�terminal BUL is to be interpreted as �any WFS containing a buried unordered list��

� Conclusion

��� Implementation issues

Parsing algorithms for generalized CFGs do not seem to have been studied extensively in the
literature� A basic dynamic programming polynomial�time parsing algorithm can be obtained by
combining the classical Cocke�Younger�Kasami algorithm for CFGs with an algorithm by Aho�
Hopcroft and Ullman for generalized regular expressions �HU	�� pp� 	�� ����� This basic algorithm
can be modi�ed to handle underlining� and still remain polynomial�time� If the query is taken to
be part of the input� then the algorithm remains polynomial�time�

While polynomial�time� the algorithm is not likely to ever be implemented in full �at least on
sequential processors
� because it is not linear�time� However� we believe that interesting subsets
of the retrieval language can be implemented using e�cient algorithms that do not need to scan the
whole document�base� We are currently developing a prototype of such a system� which supports
intersection and a restricted form of complementation�

��� Current developments

When word�expressions can include operations like adjacency or proximity� it might be useful
to ignore some markup in the document�base� For instance� one would not want the stream of
words to be broken by non�structural markup� like HTML�s �B� tags� used to display a passage
in boldface� We are currently working out the details of an addition to the model that will allow



some markup to be ignored� in a very �exible way� The addition will also allow whole segments
�not just markup
 to be ignored for searching purposes�

We are also developing a mechanismby which the results of a search can be reused in subsequent
searches�

��� Future work

Future research avenues include pursuing the investigation of interesting and e�ciently imple�
mentable subsets of the model� We also believe that important improvements could be achieved
by developing query optimization techniques�

An interesting area would be to see how variables �in the manner of �KM���
 could be in�
troduced in the model to allow further criteria based on equality� identity� or arbitrary relations
among the sequence of nodes that form a result of a query�

Massive distributed computing �for instance� cooperating Web hosts
 might constitue a promis�
ing avenue for the actual implementation of the full retrieval language of our model� Indeed�
e�cient parallel algorithms for parsing CFGs �based on boolean circuits or systolic arrays
 have
been known for quite some time� It would be interesting to see if and how these algorithms can
be modi�ed to support our model�

Work needs to be done to �nd out what kind of interfaces are needed to pass�on to the end�users
the expressive power of the model� Already� there are some results in this area �SM�	��

Finally� the true usefulness of the model would need to be evaluated by experimentation in
real�life situations�

Acknowledgement

The authors wish to thank Novell Corporation for providing the SGML sources used for experi�
mentation in this project�

This work has been supported by grants from the Social Sciences and Humanities Research
Council of Canada and from the National Sciences and Engineering Research Council of Canada�

References

�BS�	� Bray� T�� Sperberg�McQueen� C�M� Extensible Markup Language Proceedings of SGML
��� � pp� ��������

�Bur��� Burkowski� F� Retrieval Activities in a Database Consisting of Heterogeneous Collections
of Structured Text� Proceedings of SIGIR ��� � pp� ��������

�Bur��a� Burkowski� F� An Algebra for Hierarchically Organized Text�Dominated Databases� In�
formation Processing � Management � Vol� ��� No� �� pp� �������� �����



�CLR��� Cormen� T�� Leiserson� C�� Rivest� R� Introduction to Algorithms� New York
 McGraw�
Hill� �����

�DD��� DeRose� S�� Durand� D� Making Hypermedia Work� A User�s Guide to HyTime� Boston

Kluwer Academic Publishers� �����

�Gol��� Goldfarb� C� The SGML Handbook� New York
 Oxford University Press� �����

�GT�	� Gonnet� G�� Tompa� F� Mind Your Grammar
 a New Approach to Modelling Text� Pro�
ceedings of the �	th VLDB Conference� ���	� pp� ��������

�HU	�� Hopcroft� J�� Ullman� J� Introduction to Automata Theory
 Languages
 and Computation�
Reading� MA
 Addison�Wesley� ��	��

�ISO��� International Organization for Standardization� Information Technology � Processing Lan�
guages � Document Style Semantics and Speci�cation Language �DSSSL�� ISO�IEC ���	�
�����

�KM��� Kilpel�ainen� P�� Mannila� H� Grammatical Tree Matching� Proceedings of Combinatorial
Pattern Matching ��� � pp� �����	��

�KM��� Kilpel�ainen� P�� Mannila� H� Retrieval from Hierarchical Texts by Partial Patterns� Pro�
ceedings of SIGIR ��	 � pp� ��������

�KS�	� Kuikka� E�� Salminen� A� Two�dimensional �lters for structured text� Information Pro�
cessing � Management � Vol� ��� No� �� pp� �	���� ���	�

�Mac��� Macleod� I� Extending the Command Language Interface to Handle Marked�up Docu�
ments� Proceedings of the American Society for Information Science Annual Meeting ���
 �
pp� ��������

�Mac��� Macleod� I� A Query Language for Retrieving Information from Hierarchic Text Struc�
tures� The Computer Journal � Vol� ��� No� �� pp� �������� �����

�MS�	� Marcoux� Y�� S�evigny� M� Querying Hierarchical Text and Acyclic Hypertext with General�
ized Context�Free Grammars� Technical Report� EBSI� Universit�e de Montr�eal� in preparation�

�NB��� Navarro� G�� Baeza�Yates� R� A Language for Queries on Structure and Contents of Textual
Databases� Proceedings of SIGIR ��� � pp� �������

�SM�	� S�evigny� M�� Marcoux� Y� Conception et r�ealisation d�une interface�utilisateurs pour
l�interrogation de bases de documents structur�es� Canadian Journal of Information and Library
Science� Vol� ��� No� ���� pp� ���		� �����

�TW��� Travis� B�� Waldt� D� The SGML Implementation Guide� A Blueprint for SGML Migra�
tion� New York
 Springer�Verlag� �����


